Simulation of linear elastic structural elements using the Petrov–Galerkin finite element method
نویسندگان
چکیده
Abstract In this contribution, it is demonstrated that the mesh sensitivity of linear elastic Reissner–Mindlin finite‐element plate formulations can be significantly reduced by using a Petrov–Galerkin‐based approach. contrast to usual Bubnov–Galerkin method, Petrov–Galerkin methods are generally characterized fact test function and trial approximated different shape functions. To provide an overview, established for 2D solid elements, which have been shown reduce sensitivity, reviewed first. It then investigated whether suitable Petrov– Galerkin formulation developed. context, full method leads problems in treatment transverse shear locking. However, proposed partial shows desired mesh‐insensitive behavior.
منابع مشابه
buckling of viscoelastic composite plates using the finite strip method
در سال های اخیر، تقاضای استفاده از تئوری خطی ویسکوالاستیسیته بیشتر شده است. با افزایش استفاده از کامپوزیت های پیشرفته در صنایع هوایی و همچنین استفاده روزافزون از مواد پلیمری، اهمیت روش های دقیق طراحی و تحلیل چنین ساختارهایی بیشتر شده است. این مواد جدید از خودشان رفتارهای مکانیکی ارائه می دهند که با تئوری های الاستیسیته و ویسکوزیته، نمی توان آن ها را توصیف کرد. این مواد، خواص ویسکوالاستیک دارند....
Modified Fixed Grid Finite Element Method in the Analysis of 2D Linear Elastic Problems
In this paper, a modification on the fixed grid finite element method is presented and used in the solution of 2D linear elastic problems. This method uses non-boundary-fitted meshes for the numerical solution of partial differential equations. Special techniques are required to apply boundary conditions on the intersection of domain boundaries and non-boundary-fitted elements. Hence, a new met...
متن کاملAn Enhanced Finite Element method for Two Dimensional Linear Viscoelasticity using Complex Fourier Elements
In this paper, the finite element analysis of two-dimensional linear viscoelastic problems is performed using quadrilateral complex Fourier elements and, the results are compared with those obtained by quadrilateral classic Lagrange elements. Complex Fourier shape functions contain a shape parameter which is a constant unknown parameter adopted to enhance approximation’s accuracy. Since the iso...
متن کاملModified Fixed Grid Finite Element Method in the Analysis of 2D Linear Elastic Problems
In this paper, a modification on the fixed grid finite element method is presented and used in the solution of 2D linear elastic problems. This method uses non-boundary-fitted meshes for the numerical solution of partial differential equations. Special techniques are required to apply boundary conditions on the intersection of domain boundaries and non-boundary-fitted elements. Hence, a new met...
متن کاملSurface Flattening based on Linear-Elastic Finite Element Method
This paper presents a linear-elastic finite element method based flattening algorithm for three dimensional triangular surfaces. First, an intrinsic characteristic preserving method is used to obtain the initial developing graph, which preserves the angles and length ratios between two adjacent edges. Then, an iterative equation is established based on linear-elastic finite element method and t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings in applied mathematics & mechanics
سال: 2023
ISSN: ['1617-7061']
DOI: https://doi.org/10.1002/pamm.202300110